Market Analysis

Market Analysis

Formulating a clear picture of the ever-changing hydrogen markets can be a challenging endeavour. However, with plenty of research, fact-checking and analysis combined with our own knowledge and insights gained from extensive lab-testing, Triton Hydrogen is  able to continue to monitor the shift in market patterns and behaviours to help promote hydrogen in its safest form. 

Below are a selection of analyses from a range of notable professionals and researchers that give important insight into the evolving world of hydrogen.

Reports

HYDROGEN LEAKAGE: A POTENTIAL RISK FOR THE HYDROGEN ECONOMY


Zhiyuan Fan、Hadia Sheerazi、Amar Bhardwaj、Anne-Sophie Corbeau、Kathryn Longobardi、Adalberto Castañeda、Ann-Kathrin Merz、Caleb M. Woodall博士、Mahak Agrawal、Sebastian Orozco-Sanchez、Julio Friedmann博士による論文|2022年7月。

水素はエネルギーシステムの脱炭素化において重要な役割を果たすと期待されている。2022年6月現在、世界各国の政府によって30以上の水素戦略やロードマップが発表されている。水素は存在する分子の中で最も小さく、物質を容易に通り抜けるという事実に基づき、潜在的な安全問題として認識されてきた。しかし今日まで、大気中のメタンや他の温室効果ガス(GHG)の寿命を延ばすメカニズムを通じた水素の間接的な地球温暖化効果によって、水素漏洩が気候変動に寄与する可能性については、ほとんど注目されてこなかった(Paulot et al.)

PREVENTING HYDROGEN EMBRITTLEMENT: THE ROLE OF BARRIER COATINGS FOR THE HYDROGEN ECONOMY


An article by Marcel Wetegrove, Maria Jazmin Duarte, Klaus Taube, Martin Rohloff, Hariprasad Gopalan, Christina Scheu, Gerhard Dehm and Angela Kruth.

水素バリアコーティングは、水素の拡散性や溶解性が低い材料からなる保護層であり、水素の透過を遅延、低減、または妨げる可能性を示す。水素バリアコーティングは、水素脆化の影響を受けやすい鋼材、特に費用対効果の高い低合金鋼や軽量高強度鋼を、水素経済への応用を可能にすると期待されている。主に、酸化物、窒化物、炭化物を含むセラミックコーティング材料がこの目的のために研究されてきた。この総説では、様々なコーティングの水素透過に関する技術的な現状について述べる。アルミニウム2O3TiAlNとTiCは、多くのセラミック材料の中から最も有望な候補であると思われる。コーティング法については、適切な品質の層を形成する能力と、工業用にスケールアップする可能性に関して比較した。気体水素と電気化学反応に由来する水素の両方を用いて、水素透過性の特性を評価するためのさまざまなセットアップについて議論する。最後に、水素バリアコーティングの改良と最適化の可能性について概説する。

HYDROGEN PERMEATION BARRIERS: BASIC REQUIREMENTS, MATERIALS SELECTION,DEPOSITION METHODS, AND QUALITY EVALUATION

Original Article Written By Vincenc Nemanič from Jožef Stefan Institute, JSI, Jamova cesta 39, 1000 Ljubljana, Slovenia.

Stable permeation barriers are searched among materials with the lowest bulk hydrogen solubility and diffusivity. Besides a few specific pure metals, like beryllium and tungsten, dense oxides, nitrides and carbides have been mostly investigated. Coating techniques for preparation of well adhered and perfect barriers are evidently of the same importance as the material selection itself. Most attractive are the techniques where an ad-layer is formed simply by oxidation. Other methods require specific gas environments with strong electric and magnetic fields, which may represent a limit for the ad-layers uniform coverage over large and uneven areas. Evaluation of the achieved barrier performances is another challenging task. Several new methods, which can trace hydrogen isotopes in bulk at very low concentrations, often miss in the determination of their mobility. Also, they do not reveal the role of barrier defects. The classical gas permeation rate method through coated membranes is still the most reliable option to determine the actual Hydrogen Permeation Barrier (HPB) efficiency. At elevated temperature, the hydrogen permeation rate is recorded at the downstream side of a coated membrane exposed to a substantially higher hydrogen upstream pressure. By using modern vacuum instrumentation techniques, even the most effective barriers can be well characterised.

MCKINSEY SUSTAINABILITY: FIVE CHARTS ON HYDROGEN’S ROLE IN A NET-ZERO FUTURE

An article by Bernd Heid, Alma Sator, Maurits Waardenburg, and Markus Wilthaner.

Hydrogen has great potential as a carbon-free energy carrier. Here’s a look at the momentum behind this widely applicable technology. Hydrogen could play a central role in helping the world reach net- zero emissions by 2050. As a complement to other technologies, including renewable power and biofuels, hydrogen has the potential to decarbonize industries including steel, petrochemicals, fertilizers, heavy-duty mobility (on and off-road), maritime shipping, and aviation, as well as to support flexible power generation (among other applications). In 2050, hydrogen could contribute more than 20 percent of annual global emissions reductions. Hydrogen’s potential role in the broader energy transition is explored in a series of industry reports coauthored by McKinsey and the Hydrogen Council—a global, CEO-led initiative with members from more than 140 companies. The reports explore, for example, how demand for hydrogen could reshape current power, gas, chemicals, and fuel markets; the need for scaling hydrogen production, particularly clean hydrogen (which is made with renewables or with measures to lower emissions); and what must happen in the coming decade to reach net-zero targets. The momentum behind hydrogen has accelerated in the past year, as described in 水素インサイト 2022最近発表された水素産業の現状についての見解。投資もプロジェクト開発も活発化している。しかし、資金ギャップは依然として残っている。

How hydrogen empowers the energy transition

Report written by the members of the Hydrogen Council: Air Liquide S.A., Alstom, Anglo American plc, BMW Group, Daimler AG, Engie S.A., Honda Motor Co. Ltd, Hyundai Motor Company, Kawasaki Heavy Industries Ltd., Royal Dutch Shell, The Linde Group, Total S.A., Toyota Motor Corporation. Paris, December 12, 2015: 195 countries sign a legally binding agreement to keep global warming well below 2°C – an ambitious goal that will require the economies around the globe to decarbonize large parts of the world’s energy system. This energy transition faces challenges. Significant amounts of renewable energy must be installed and integrated, while securing the supply and resilience of the system is demanding. Energy end-use sectors, such as transport, must be decarbonized at scale.