Market Analysis
Formulating a clear picture of the ever-changing hydrogen markets can be a challenging endeavour. However, with plenty of research, fact-checking and analysis combined with our own knowledge and insights gained from extensive lab-testing, Triton Hydrogen is able to continue to monitor the shift in market patterns and behaviours to help promote hydrogen in its safest form.
Below are a selection of analyses from a range of notable professionals and researchers that give important insight into the evolving world of hydrogen.
Reports

HYDROGEN LEAKAGE: A POTENTIAL RISK FOR THE HYDROGEN ECONOMY
Vätgas förväntas spela en nyckelroll i utfasningen av fossila bränslen i energisystemet. Fram till juni 2022 har mer än 30 vätgasstrategier och färdplaner publicerats av regeringar runt om i världen. Väte har identifierats som en potentiell säkerhetsfråga på grund av att det är den minsta molekylen som existerar och lätt kan passera genom material. Hittills har dock mycket lite uppmärksamhet ägnats åt vätgasläckagets potentiella bidrag till klimatförändringarna, som drivs av vätgasens indirekta globala uppvärmningseffekt genom mekanismer som förlänger livslängden för metan och andra växthusgaser i atmosfären (Paulot et al. 2012; Derwent et al. 2020).

PREVENTING HYDROGEN EMBRITTLEMENT: THE ROLE OF BARRIER COATINGS FOR THE HYDROGEN ECONOMY
Vätgasbarriärbeläggningar är skyddande skikt som består av material med en låg inneboende vätgasdiffusivitet och löslighet, som visar potential att fördröja, minska eller hindra vätgaspermeation. Vätgasbarriärbeläggningar förväntas göra det möjligt att använda stål som är känsliga för väteförsprödning, särskilt kostnadseffektiva låglegerade stål eller lätta höghållfasta stål, för tillämpningar i en vätgasekonomi. Främst har keramiska beläggningsmaterial undersökts för detta ändamål, inklusive oxider, nitrider och karbider. I denna översikt diskuteras det aktuella läget när det gäller vätgaspermeation för en mängd olika beläggningar. Al2O3, TiAlN och TiC verkar vara de mest lovande kandidaterna från en stor pool av keramiska material. Beläggningsmetoderna jämförs med avseende på deras förmåga att producera skikt med lämplig kvalitet och deras potential för uppskalning för industriell användning. Olika uppställningar för karakterisering av vätgaspermeabilitet diskuteras, med användning av både gasformigt väte och väte som härrör från en elektrokemisk reaktion. Slutligen skisseras möjliga vägar för förbättring och optimering av vätgasbarriärbeläggningar.

HYDROGEN PERMEATION BARRIERS: BASIC REQUIREMENTS, MATERIALS SELECTION,DEPOSITION METHODS, AND QUALITY EVALUATION
Original Article Written By Vincenc Nemanič from Jožef Stefan Institute, JSI, Jamova cesta 39, 1000 Ljubljana, Slovenia.
Stable permeation barriers are searched among materials with the lowest bulk hydrogen solubility and diffusivity. Besides a few specific pure metals, like beryllium and tungsten, dense oxides, nitrides and carbides have been mostly investigated. Coating techniques for preparation of well adhered and perfect barriers are evidently of the same importance as the material selection itself. Most attractive are the techniques where an ad-layer is formed simply by oxidation. Other methods require specific gas environments with strong electric and magnetic fields, which may represent a limit for the ad-layers uniform coverage over large and uneven areas. Evaluation of the achieved barrier performances is another challenging task. Several new methods, which can trace hydrogen isotopes in bulk at very low concentrations, often miss in the determination of their mobility. Also, they do not reveal the role of barrier defects. The classical gas permeation rate method through coated membranes is still the most reliable option to determine the actual Hydrogen Permeation Barrier (HPB) efficiency. At elevated temperature, the hydrogen permeation rate is recorded at the downstream side of a coated membrane exposed to a substantially higher hydrogen upstream pressure. By using modern vacuum instrumentation techniques, even the most effective barriers can be well characterised.

MCKINSEY SUSTAINABILITY: FIVE CHARTS ON HYDROGEN’S ROLE IN A NET-ZERO FUTURE
Hydrogen has great potential as a carbon-free energy carrier. Here’s a look at the momentum behind this widely applicable technology. Hydrogen could play a central role in helping the world reach net- zero emissions by 2050. As a complement to other technologies, including renewable power and biofuels, hydrogen has the potential to decarbonize industries including steel, petrochemicals, fertilizers, heavy-duty mobility (on and off-road), maritime shipping, and aviation, as well as to support flexible power generation (among other applications). In 2050, hydrogen could contribute more than 20 percent of annual global emissions reductions. Hydrogen’s potential role in the broader energy transition is explored in a series of industry reports coauthored by McKinsey and the Hydrogen Council—a global, CEO-led initiative with members from more than 140 companies. The reports explore, for example, how demand for hydrogen could reshape current power, gas, chemicals, and fuel markets; the need for scaling hydrogen production, particularly clean hydrogen (which is made with renewables or with measures to lower emissions); and what must happen in the coming decade to reach net-zero targets. The momentum behind hydrogen has accelerated in the past year, as described in Hydrogen Insights 2022,1 a recently published perspective on the state of the hydrogen industry. Both investment and project development have ramped up. However, a funding gap remains.
